Low-Temperature Synthesis of Aluminum Sulfide as the Solvate $\mathrm{Al}_{4} \mathrm{~S}_{6}\left(\mathrm{NMe}_{3}\right)_{4}$ in Hydrocarbon Solution

Rudolf J. Wehmschulte and Philip P. Power*

Department of Chemistry University of California Davis, California 95616

Received June 26, 1997
Aluminum sulfide, $\mathrm{Al}_{2} \mathrm{~S}_{3}$, a moisture-sensitive colorless solid, has a variety of structures in the crystalline phase ${ }^{1}$ and is synthesized by the direct reaction of the elements at elevated temperature. The moisture sensitivity and the high-temperature synthesis are features common to most binary heavier main group $13-15$ and $13-16$ compounds. ${ }^{2}$ Their high lattice energy, ${ }^{3}$ however, precludes solubility at ambient temperature in media with which they do not react. The isolation and purification of stoichiometric neutral cage fragments of such lattices under mild conditions is thus an important synthetic challenge, since many binary group 13-15 and 13-16 compounds have interesting electronic properties. ${ }^{4}$ One approach to the problem involves the generation of such substances by a homogeneous reaction in solution followed by their stabilization and crystallization as a complex with neutral donor ligands. Some neutral lithium halide fragments have been synthesized by this method. ${ }^{5}$ This general approach has also been applied to a number of cages of the heavier chalcogenides such as $\mathrm{Cu}_{50} \mathrm{~S}_{25}\left\{\mathrm{P}(\mathrm{tBu})_{2} \mathrm{Me}\right\}_{16}{ }^{6 \mathrm{a}}$ and $\mathrm{Cu}_{146} \mathrm{Se}_{73}\left(\mathrm{PPh}_{3}\right)_{30} \cdot{ }^{6 \mathrm{~b}} \quad$ To date, however, it has not proven possible to synthesize cage complexes in which both the metal ion and counteranion have high formal charges as in group 13-15 or 13-16 binary species. ${ }^{7}$ It is now shown that the reaction between $\mathrm{Me}_{3} \mathrm{~N} \cdot \mathrm{AlH}_{3}$ and $\mathrm{S}\left(\mathrm{SiMe}_{3}\right)_{2}$ at relatively low temperature leads to the aluminum sulfide complexes $\mathrm{Al}_{4} \mathrm{~S}_{5}(\mathrm{H})_{2}\left(\mathrm{NMe}_{3}\right)_{4} \cdot \mathrm{PhMe}(\mathbf{1} \cdot \mathrm{PhMe})$ and $\mathrm{Al}_{4} \mathrm{~S}_{6}-$ $\left(\mathrm{NMe}_{3}\right)_{4}$ (2) in moderate yields.

The preparative routes to $\mathbf{1}$ and $\mathbf{2}$ involve the stoichiometries given in eqs 1 and 2 . The use of $\mathrm{S}\left(\mathrm{SiMe}_{3}\right)_{2}$ as the chalcogenide

$$
\begin{gathered}
4 \mathrm{Me}_{3} \mathrm{~N} \cdot \mathrm{AlH}_{3}+5 \mathrm{~S}\left(\mathrm{SiMe}_{3}\right)_{2} \xrightarrow{\mathrm{PhMe}} \\
\mathrm{Al}_{4} \mathrm{~S}_{5}(\mathrm{H})_{2}\left(\mathrm{NMe}_{3}\right)_{4}+10 \mathrm{Me}_{3} \mathrm{SiH} \\
4 \mathrm{Me}_{3} \mathrm{~N} \cdot \mathrm{AlH}_{3}+6 \mathrm{~S}\left(\mathrm{SiMe}_{3}\right)_{2} \xrightarrow{\mathbf{1}} \xrightarrow{\mathrm{PhMe}_{4}} \\
\underset{\mathbf{2 l} \mathrm{~S}_{6}\left(\mathrm{NMe}_{3}\right)_{4}+12 \mathrm{Me}_{3} \mathrm{SiH}}{(2}
\end{gathered}
$$

transfer agent was prompted by the reaction of the alane $\left(\mathrm{Mes}^{*} \mathrm{AlH}_{2}\right)_{2}\left(\right.$ Mes $\left.*=-\mathrm{C}_{6} \mathrm{H}_{2}-2,4,6-(\mathrm{tBu})_{3}\right)$ with the siloxane $\left(\mathrm{Me}_{2}-\right.$ $\mathrm{SiO})_{3}$ to afford the alumoxane $\left(\mathrm{Mes}^{*} \mathrm{AlO}\right)_{4}$ in high yield with

[^0]elimination of $\mathrm{Me}_{2} \mathrm{SiH}_{2} .{ }^{8}$ In addition, direct interaction of the elemental chalcogens Se and Te with $\mathrm{Me}_{3} \mathrm{~N} \cdot \mathrm{AlH}_{3}$ has been shown to afford $\left\{\mathrm{Me}_{3} \mathrm{~N} \cdot \mathrm{Al}(\mathrm{H})\left(\mu_{2}-\mathrm{E}\right)\right\}_{2}(\mathrm{E}=\mathrm{Se}$ or Te$) .{ }^{9}$

Reaction of $\mathrm{Me}_{3} \mathrm{~N} \cdot \mathrm{AlH}_{3}$ and $\mathrm{S}\left(\mathrm{SiMe}_{3}\right)_{2}$ in toluene at $90-95$ ${ }^{\circ} \mathrm{C}$ according to eq 1 affords $\mathbf{1} \cdot \mathrm{PhMe}$ in 67% purified yield. ${ }^{10}$ X -ray data ${ }^{11 \mathrm{a}}$ show that its structure (Figure 1) is a bicyclic $\mathrm{Al}_{4} \mathrm{~S}_{5}$ [3.3.1] array in which two fused six-membered AlS rings have a boat conformation. Each Al is bound to a $\mathrm{Me}_{3} \mathrm{~N}$ donor (av $\mathrm{Al}-\mathrm{N}=2.021(7) \AA$) as well as to two μ_{2}-sulfides (av $\mathrm{Al}-\mathrm{S}=$ $2.223(11) \AA$). In addition, the two bridgehead Al atoms ($\mathrm{Al}(1)$ and $\mathrm{Al}(3))$ are linked by a μ_{2}-sulfide (av $\mathrm{Al}-\mathrm{S}=2.232(2) \AA$), whereas $\mathrm{Al}(2)$ and $\mathrm{Al}(4)$ each carry a hydrogen (av $\mathrm{Al}-\mathrm{H}=$ $1.54(5) \AA$). Thus, all aluminums in $1 \cdot \mathrm{PhMe}$ have distorted tetrahedral coordination. Spectroscopic data $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right.$, and ${ }^{27} \mathrm{Al}$ NMR and IR) are in harmony with the formula established for $1 \cdot \mathrm{PhMe}$ by X-ray crystallography. ${ }^{1} \mathrm{H}$ NMR spectroscopy reveals a 1:1 ratio of $\mathbf{1}$ and PhMe and a $2: 1$ ratio of $\mathrm{Me}_{3} \mathrm{~N}$ and $\mathrm{Al}-\mathrm{H}$ groups. IR absorptions for the $\mathrm{Al}-\mathrm{H}$ and $\mathrm{Al}-\mathrm{S}$ bonds were observed at 1782 and $503 \mathrm{~cm}^{-1}$.

Complete elimination of Al hydrogen is observed in the reaction of $\mathrm{Me}_{3} \mathrm{~N} \cdot \mathrm{AlH}_{3}$ with a slight excess of $\mathrm{S}\left(\mathrm{SiMe}_{3}\right)_{2}$ over the required stoichiometry (i.e., $>1.5 \mathrm{~S}$ per Al). ${ }^{10 \mathrm{~b}}$ The structure of the product $\mathrm{Al}_{4} \mathrm{~S}_{6}\left(\mathrm{NMe}_{3}\right)_{4}(\mathbf{2})^{1 \mathrm{bb}}$ features an adamantanyl $\mathrm{Al}_{4} \mathrm{~S}_{6}$ framework with each bridgehead Al complexed to $\mathrm{Me}_{3} \mathrm{~N}$ $\left(\mathrm{Al}-\mathrm{N}=1.991(4) \AA\right.$) and three μ_{2}-sulfides $(\mathrm{Al}-\mathrm{S}=2.2235$ (7) \AA) (Figure 2). The coordination at the aluminums is thus distorted tetrahedral $\left(\mathrm{S}-\mathrm{Al}-\mathrm{S}=114.61(2)^{\circ}, \mathrm{S}-\mathrm{Al}-\mathrm{N}=\right.$ $\left.103.65(3)^{\circ}\right)$, and the two-coordinate sulfurs feature an $\mathrm{Al}-\mathrm{S}-$ Al angle of $97.82(6)^{\circ}$. Attempts to convert 1 to 2 via reaction of 1 equiv of $\mathrm{S}\left(\mathrm{SiMe}_{3}\right)_{2}$ have been only partially successful. The major problem arose from attempted redissolution of $\mathbf{1} \cdot \mathrm{PhMe}$ in PhMe which results in the deposition of an (as yet
(7) However, related cage species (e.g., $\mathrm{Cd}_{32} \mathrm{Se}_{14}(\mathrm{SePh})_{36}\left(\mathrm{PPh}_{3}\right)_{4}$ or $\left.\mathrm{Cu}_{96} \mathrm{P}_{30}\left\{\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}\right\}_{6}\left(\mathrm{PEt}_{3}\right)_{18}\right)$ having multiply-charged anionic ligands have been synthesized. See: Behrens, S.; Bettenhausen, M.; Deveson, A. C.; Eichhofer, A.; Fenske, D.; Lohde, A.; Woggon, U. Angew. Chem., Int. Ed. Engl. 1996, 35, 2215. Fenske, D.; Holstein, W. Angew. Chem., Int. Ed. Engl. 1994, 33, 1290.
(8) Wehmschulte, R.; Power, P. P. J. Am. Chem. Soc. 1997, 119, 8387.
(9) Gardiner, M. G.; Raston, C. L.; Tolhurst, V.-A. J. Chem. Soc., Chem. Commun. 1995, 2501.
(10) All manipulations were carried out under anaerobic and anhydrous conditions. Both 1 and 2 gave satisfactory C, H, and N elemental analyses. (a) $\mathrm{Al}_{4} \mathrm{~S}_{5}(\mathrm{H})_{2}\left(\mathrm{NMe}_{3}\right)_{4} \cdot \mathrm{PhMe}(1 \cdot \mathrm{PhMe})$. A solution of $0.36 \mathrm{~g}(4.0 \mathrm{mmol})$ of H_{3} AlNMe ${ }^{10 \mathrm{c}}$ in toluene (25 mL) was treated with $1.06 \mathrm{~mL}(5.0 \mathrm{mmol})$ of $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{~S}^{10 \mathrm{~d}}$ at room temperature and heated to $90-95^{\circ} \mathrm{C}$ for 24 h . The small amount of voluminous, grayish precipitate was separated, and the clear, colorless supernatant liquid was concentrated to $c a .3 \mathrm{~mL}$ and cooled in a $-20^{\circ} \mathrm{C}$ freezer for 3 days to afford 0.40 g of colorless crystals of $\mathbf{1} \cdot \mathrm{PhMe}$. Recrystallization from toluene $(20 \mathrm{~mL})$ gave 0.16 g of the pure product as colorless crystals of sufficient quality for X-ray crystallography. Yield: 27%. The crystals turn opaque at $\mathrm{mp}=75-90{ }^{\circ} \mathrm{C}$ (desolvation), foams at ca. $250{ }^{\circ} \mathrm{C}$, and do not melt below $315{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: $7.05(\mathrm{~m}$, toluene, 5 H$), 4.9\left(\mathrm{~s}, \mathrm{br}, w_{1 / 2}=170 \mathrm{~Hz}, \mathrm{Al}-\mathrm{H}, 2 \mathrm{H}\right), 2.47\left(\mathrm{~s}, \mathrm{Me}_{3} \mathrm{~N}\right.$, $18 \mathrm{H}), 2.29\left(\mathrm{~s}, \mathrm{Me}_{3} \mathrm{~N}, 18 \mathrm{H}\right), 2.10(\mathrm{~s}$, toluene, 3 H$) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: $47.2\left(\mathrm{Me}_{3} \mathrm{~N}\right) .{ }^{27} \mathrm{Al}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, v_{\mathrm{o}}=78.34047 \mathrm{MHz}\right): 146\left(\mathrm{~s}, w_{1 / 2} \approx 1900\right.$ Hz). IR (Nujol mull): 1782 (st, $\mathrm{Al}-\mathrm{H}$). (b) $\mathrm{Al}_{4} \mathrm{~S}_{6}\left(\mathrm{NMe}_{3}\right)_{4}, 2$ 2. $\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right)_{2} \mathrm{~S}$ $(1.27 \mathrm{~mL}, 6.0 \mathrm{mmol})$ was added to a solution of $\mathrm{H}_{3} \mathrm{AlNMe}_{3}(0.36 \mathrm{~g}, 4.0$ mmol) in toluene (25 mL), and the mixture was heated to $110-115^{\circ} \mathrm{C}$ for $c a .17 \mathrm{~h}$. The clear, colorless solution was separated from the small amount of voluminous precipitate and heated to $110-115^{\circ} \mathrm{C}$ for an additional 4 d to afford a colorless, crystalline solid, which was washed with n-pentane (20 mL) and dried under reduced pressure. This solid consists of at least two different compounds: bundles of thin plates or needles which still contain the $\mathrm{Al}-\mathrm{H}$ function (by IR) and clear blocks of approximately cubooctahedral shape with a maximum size of 0.2 mm in an estimated 60:40 ratio. The blocks were of sufficient quality for X-ray diffraction. Yield: 0.26 g . This compound does not melt below $315^{\circ} \mathrm{C}$. (c) Ruff, J. K.; Hawthorne, M. F. J. Am. Chem. Soc. 1960, 82, 2141. (d) Armitage, D. A.; Clark, M. J.; Sinden, A. W.; Wingfield, J. N.; Abel, E.W.; Louis, E. J. Inorg. Synth. 1974, 15, 207.
(11) Crystal data at 130 K with $\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54178 \AA)$ radiation: (a) $1 \cdot \mathrm{PhMe}, \mathrm{C}_{19} \mathrm{H}_{46} \mathrm{Al}_{4} \mathrm{~N}_{4} \mathrm{~S}_{5}, M_{r}=598.82$, orthorhombic, space group Pna ${ }_{1}$, $a=11.8936(12) \AA, b=27.252(2) \AA, c=10.042(2) \mathrm{A}, V=3255.0(7) \AA^{3}$, $D_{\text {calcd }}=1.222 \mathrm{~g} \mathrm{~cm}^{-3}, Z=4, R=0.0253$ for $2189(I>2 \sigma(I))$ reflections; (b) $\mathrm{Al}_{4} \mathrm{~S}_{6}\left(\mathrm{NMe}_{3}\right)_{4}$ (2), $\mathrm{C}_{12} \mathrm{H}_{36} \mathrm{Al}_{4} \mathrm{~N}_{4} \mathrm{~S}_{6}, M_{r}=536.73$, cubic, space group $I 43 m, a=11.4095(9) \AA, V=1485.3(2) \AA^{3}, D_{\text {calcd }}=1.200 \mathrm{~g} \mathrm{~cm}^{-3}, Z=2$, $R=0.0305$ for $172(I>2 \sigma(I))$ reflections.

Figure 1. Thermal ellipsoidal (30\%) plot of 1. Hydrogen atoms are not shown except for $H(1)$ and $H(2)$. Selected bond distances (\AA) and angles (deg) are the following: $\mathrm{Al}(1)-\mathrm{S}(1)=2.208(2), \mathrm{Al}(1)-\mathrm{S}(4)$ $=2.221(2), \mathrm{Al}(1)-\mathrm{S}(5)=2.230(2), \mathrm{Al}(2)-\mathrm{S}(1)=2.232(2), \mathrm{Al}(2)-$ $\mathrm{S}(2)=2.229(2), \mathrm{Al}(3)-\mathrm{S}(2)=2.214(2), \mathrm{Al}(3)-\mathrm{S}(3)=2.202(2), \mathrm{Al}-$ (3) $-\mathrm{S}(5)=2.233(2), \mathrm{Al}(4)-\mathrm{S}(3)=2.225(2), \mathrm{Al}(4)-\mathrm{S}(4)=2.235(2)$, $\mathrm{Al}(1)-\mathrm{N}(1)=2.032(2), \mathrm{Al}(2)-\mathrm{N}(2)=2.022(4), \mathrm{Al}(3)-\mathrm{N}(3)=2.017-$ (4), $\mathrm{Al}(4)-\mathrm{N}(4)=2.013(3), \mathrm{Al}(2)-\mathrm{H}(1)=1.58(4), \mathrm{Al}(4)-\mathrm{H}(2)=$ $1.51(5), \mathrm{Al}(1)-\mathrm{S}(1)-\mathrm{Al}(2)=99.50(6), \mathrm{Al}(1)-\mathrm{S}(5)-\mathrm{Al}(3)=96.35-$ (5), $\mathrm{S}(1)-\mathrm{Al}(1)-\mathrm{S}(4)=115.37(6), \mathrm{S}(1)-\mathrm{Al}(1)-\mathrm{S}(5)=114.22(6)$, $\mathrm{S}(4)-\mathrm{Al}(1)-\mathrm{S}(5)=114.06(6), \mathrm{S}(1)-\mathrm{Al}(1)-\mathrm{N}(1)=104.76(11), \mathrm{S}(4)-$ $\mathrm{Al}(1)-\mathrm{N}(1)=103.97(11)$.

Figure 2. Thermal ellipsoidal (30\%) plot of 2. Hydrogen atoms are not shown. Selected bond distances (\AA) and angles (deg) are the following: $\mathrm{Al}(1)-\mathrm{S}(1)=2.2235(7), \mathrm{Al}(1)-\mathrm{N}(1)=1.991(4), \mathrm{Al}(1)-$ $\mathrm{S}(1)-\mathrm{Al}(1 \mathrm{a})=97.82(6), \mathrm{S}(1)-\mathrm{Al}(1)-\mathrm{S}(1 \mathrm{a})=114.61(2), \mathrm{S}(1)-\mathrm{Al}-$ $(1)-\mathrm{N}(1)=103.65(3)$.
unidentified) insoluble solid but having both $\mathrm{Al}-\mathrm{H}$ and $\mathrm{Al}-\mathrm{S}$ IR absorptions.

The $\mathrm{Al}-\mathrm{N}$ and $\mathrm{Al}-\mathrm{S}$ structural parameters in $\mathbf{1}$ and $\mathbf{2}$ are consistent with currently available data on related complexes. For example, the $\mathrm{Al}-\mathrm{N}$ distances in $\mathbf{1}(2.032(7) \AA$) and 2 (1.991(4) \AA) may be compared to the $2.011(9) \AA$ observed in $\left\{\mathrm{Me}_{3}-\right.$
$\left.\mathrm{NAl}(\mathrm{H})\left(\mu_{2}-\mathrm{E}\right)\right\}_{2}(\mathrm{E}=\mathrm{Se}$ or Te$) .{ }^{9}$ The $\mathrm{Al}-\mathrm{S}$ distances in $\mathbf{1}$ and $2(c a .2 .22 \AA)$ are shorter than those in the recently reported $\left\{\left(\mathrm{Me}_{2} \mathrm{EtC}\right) \mathrm{AlS}\right\}_{4}{ }^{12}$ (ca. $2.31 \AA$) which involves μ_{3}-S sulfides in an $\mathrm{Al}_{4} \mathrm{~S}_{4}$ cubane arrangement, but are longer than those in $\mathrm{S}\left[\mathrm{Al}\left\{\mathrm{CH}\left(\mathrm{SiMe}_{3}\right)_{2}\right\}_{2}\right]_{2}(\mathrm{Al}-\mathrm{S}=2.187(4) \AA)^{13}$ or $\mathrm{Al}\left(\mathrm{SMes}^{*}\right)_{3}$ (av $\mathrm{Al}-\mathrm{S}=2.185(5) \AA)^{14}$ where, although the sulfide or thiolate has a two-coordinate S , the Al is three-coordinate. The closest known structure to $\mathbf{2}$ is the adamantanyl species $\mathrm{Al}_{4} \mathrm{I}_{4}(\mathrm{SMe})_{4} \mathrm{~S}_{2}{ }^{15}$ in which four of the six core sulfurs are derived from thiolates. The $\mathrm{Al}-\mu_{2}$-S (sulfide) distances average 2.18(2) Å which, owing to the higher standard deviations, cannot be regarded as appreciably shorter than the $\mathrm{Al}-\mathrm{S}$ bond length in $\mathbf{2}$. The ternary compound TlAlS_{2} has also been described as isomorphous to TlGaSe $2,{ }^{16}$ which consists of layers of corner-sharing adaman-tane-like $\left[\mathrm{M}_{4} \mathrm{X}_{10}\right](\mathrm{M}=\mathrm{Al}, \mathrm{Ga}, \mathrm{In} ; \mathrm{X}=\mathrm{S}, \mathrm{Se})^{17}$ supertetrahedra, but no additional details were given.

Although the stoichiometry of the $\mathrm{Al}_{4} \mathrm{~S}_{6}$ core in $\mathbf{2}$ corresponds to the formula of $\mathrm{Al}_{2} \mathrm{~S}_{3}$, the coordination of the Al in $\mathbf{2}$ involves three sulfides and one amine nitrogen. It thus differs from the essentially tetrahedral AlS_{4} environment found in $\mathrm{Al}_{2} \mathrm{~S}_{3}{ }^{18}$ and the related anionic salts $\mathrm{TlAlS}_{2},{ }^{16 \mathrm{a}} \mathrm{Tl}_{3} \mathrm{Al}_{7} \mathrm{~S}_{12},{ }^{19}$ and $^{2} \mathrm{Tl}_{3} \mathrm{Al}_{13} \mathrm{~S}_{21},{ }^{16 \mathrm{~b}}$ whose structures consist of corner-sharing Al-centered AlS_{4} tetrahedra. Nonetheless, the adamantanyl core of $\mathbf{2}$ is composed of $\mathrm{S}_{3} \mathrm{AlN}$ tetrahedra in which the sulfide corners are also shared. Thus, $\mathbf{2}$ is the smallest neutral unit with the correct $\mathrm{Al}_{2} \mathrm{~S}_{3}$ stoichiometry which resembles the structure of $\mathrm{Al}_{2} \mathrm{~S}_{3}$. A putatively smaller neutral $\mathrm{Al}_{2} \mathrm{~S}_{3}\left(\mathrm{NMe}_{3}\right)_{2}$ fragment would probably be different in the sense that its structure would consist of an $\mathrm{Al}_{2} \mathrm{~S}_{3}$ trigonal bipyramid with face- rather than corner sharing-NAlS ${ }_{3}$ tetrahedra. Attempted sublimation of 2 at low pressure and $c a .250^{\circ} \mathrm{C}$ results in the elimination of NMe_{3} and the deposition of an amorphous form of $\mathrm{Al}_{2} \mathrm{~S}_{3}$.

Acknowledgment. We thank the Donors of the Petroleum Research Fund administered by the American Chemical Society and the National Science Foundation for financial support.

Supporting Information Available: Tables of data collection parameters, atom coordinates, bond distances, angles, anisotropic thermal parameters, and hydrogen coordinates (21 pages). See any current masthead page for ordering and Internet access instructions.

JA972111C

[^1]
[^0]: (1) Wells, A. F. Structural Inorganic Chemistry, 5th ed.; Clarendon: Oxford, 1984; p 764.
 (2) Taylor, M. J.; Brothers, P. J. In Chemistry of Aluminum, Gallium, Indium and Thallium; Downs, A. J., Ed.; Blackie-Chapman Hall: London, 1993; Chapter 3, pp 161, 168.
 (3) The lattice energy for an ionic compound may be estimated by using the Kapustinskii equation. This shows that the lattice energies of species such as $\mathrm{Al}_{2} \mathrm{~S}_{3}$ with multiply-charged ions are often more than an order of magnitude greater than the simplest ionic species such as NaCl . Kapustinskii, A. F. Z. Phys. Chem. (Leipzig) 1933, B22, 257.
 (4) Grant, I. R. In ref 2, Chapter 5.
 (5) (a) Barr, D.; Snaith, R.; Wright, D. S.; Mulvey, R. E.; Wade, K. J. Am. Chem. Soc. 1987, 109, 7891. (b) Barr, D.; Doyle, M. J.; Mulvey, R. E.; Rathby, P. R.; Reed, D.; Snaith, R.; Wright, D. S. J. Chem. Soc., Chem. Commun. 1989, 318. (c) Veith, M.; Hobein, P.; Huch, V. J. Chem. Soc., Chem. Commun. 1995, 213.
 (6) (a) Fenske, D.; Dehnen, S. Chem. Eur. J. 1996, 2, 1407. (b) Krautscheid, H.; Fenske, D.; Baum, G.; Semmelmann, M. Angew. Chem., Int. Ed. Engl. 1993, 32, 1303.

[^1]: (12) Harlan, C. J.; Gillan, E. G.; Bott, S. G.; Barron, A. R. Organometallics 1996, 15, 5479.
 (13) Uhl, W.; Vester, A.; Hiller, W. J. Organomet. Chem. 1993, 443, 9-17.
 (14) Ruhlandt-Senge, K.; Power, P. P. Inorg. Chem. 1991, 30, 2633.
 (15) Boardman, A.; Small, R. W. H.; Worrall, I. J. Inorg. Chim. Acta 1986, 120, L23-L24.
 (16) (a) Müller, D.; Hahn, H. Z. Anorg. Allg. Chem. 1978, 438, 258. (b) Krebs, B.; Greiwing, H. Acta Chem. Scand. 1991, 45, 833.
 (17) Krebs, B.; Voelker, D.; Stiller, K.-O. Inorg. Chim. Acta 1982, 65, L101-L102.
 (18) A new high-temperature hexagonal modification of $\mathrm{Al}_{2} \mathrm{~S}_{3}$ involves half of the aluminum atoms in trigonal bipyramidal coordination, however: Krebs, B.; Schiemann, A.; Läge, M. Z. Anorg. Allg. Chem. 1993, 619, 983.
 (19) Krebs, B.; Greiwing, H. Z. Anorg. Allg. Chem. 1992, 616, 145.

